Functional inhibition of the human middle temporal cortex affects non-visual motion perception: a repetitive transcranial magnetic stimulation study during tactile speed discrimination.
نویسندگان
چکیده
The visual motion-responsive middle temporal complex (hMT+) is activated during tactile and aural motion discrimination in both sighted and congenitally blind individuals, suggesting a supramodal organization of this area. Specifically, non-visual motion processing has been found to activate the more anterior portion of the hMT+. In the present study, repetitive transcranial magnetic stimulation (rTMS) was used to determine whether this more anterior portion of hMT+ truly plays a functional role in tactile motion processing. Sixteen blindfolded, young, healthy volunteers were asked to detect changes in the rotation velocity of a random Braille-like dot pattern by using the index or middle finger of their right hand. rTMS was applied for 600 ms (10 Hz, 110% motor threshold), 200 ms after the stimulus onset with a figure-of-eight coil over either the anterior portion of hMT+ or a midline parieto-occipital site (as a control). Accuracy and reaction times were significantly impaired only when TMS was applied on hMT+, but not on the control area. These results indicate that the recruitment of hMT+ is necessary for tactile motion processing, and thus corroborate the hypothesis of a 'supramodal' functional organization for this sensory motion processing area.
منابع مشابه
Seeing touch in the somatosensory cortex: a TMS study of the visual perception of touch.
Recent studies suggest the existence of a visuo-tactile mirror system, comprising the primary (SI) and secondary (SII) somatosensory cortices, which matches observed touch with felt touch. Here, repetitive transcranial magnetic stimulation (rTMS) was used to determine whether SI or SII play a functional role in the visual processing of tactile events. Healthy participants performed a visual dis...
متن کاملFacilitating Effect of 15-Hz Repetitive Transcranial Magnetic Stimulation on Tactile Perceptual Learning
Recent neuroimaging studies have revealed that tactile perceptual learning can lead to substantial reorganizational changes of the brain. We report here for the first time that combining high-frequency (15 Hz) repetitive transcranial magnetic stimulation (rTMS) over the primary somatosensory cortex (SI) with tactile discrimination training is capable of facilitating operant perceptual learning....
متن کاملSafety and Therapeutic Effects of Repetitive Transcranial Magnetic Stimulation and Behavior Therapy in a Pregnant Woman: Case Report
In this study, the authors reported a case of woman with severe compulsion who became pregnant during the Repetitive transcranial magnetic stimulation. We carried out Repetitive transcranial magnetic stimulation and behavior therapy simultaneously after repeated medications' refraction. The patient received 20 sessions 1 Hz Repetitive transcranial magnetic stimulation in right dorsolateral pref...
متن کاملInduced deficits in speed perception by transcranial magnetic stimulation of human cortical areas V5/MT+ and V3A.
In this report, we evaluate the role of visual areas responsive to motion in the human brain in the perception of stimulus speed. We first identified and localized V1, V3A, and V5/MT+ in individual participants on the basis of blood oxygenation level-dependent responses obtained in retinotopic mapping experiments and responses to moving gratings. Repetitive transcranial magnetic stimulation (rT...
متن کاملVisual area V5/hMT+ contributes to perception of tactile motion direction: a TMS study
Human imaging studies have reported activations associated with tactile motion perception in visual motion area V5/hMT+, primary somatosensory cortex (SI) and posterior parietal cortex (PPC; Brodmann areas 7/40). However, such studies cannot establish whether these areas are causally involved in tactile motion perception. We delivered double-pulse transcranial magnetic stimulation (TMS) while m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Experimental biology and medicine
دوره 236 2 شماره
صفحات -
تاریخ انتشار 2011